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Structural studies of dimethyl sulfoxide (DMSO) reductases were
hampered by modification of the active site during purification. We
report an X-ray absorption spectroscopic analysis of the molyb-
denum active site of Escherichia coli DMSO reductase contained
within its native membranes. The enzyme in these preparations is
expected to be very close to the form found in vivo. The oxidized
active site was found to have four Mo−S ligands at 2.43 Å, one
ModO at 1.71 Å, and a longer Mo−O at 1.90 Å. We conclude
that the oxidized enzyme is a monooxomolybdenum(VI) species
coordinated by two molybdopterin dithiolenes and a serine. The
bond lengths determined for E. coli DMSO reductase are very
similar to those determined for the well-characterized Rhodobacter
sphaeroides DMSO reductase, suggesting similar active site
structures for the two enzymes. Furthermore, our results suggest
that the form found in vivo is the monooxobis(molybdopterin)
species.

The dimethyl sulfoxide (DMSO) reductase ofEscherichia
coli is a membrane-bound multiprotein complex that provides
the terminal step in the electron-transfer chain when the
organism is growing on DMSO.1 It is a complex molybde-
num and Fe-S cluster-containing enzyme that is bound to
the plasma membrane. The enzyme consists of three subunits.
The largest, DmsA, contains the molybdenum active site of
DMSO reduction, DmsB contains four [4Fe-4S] clusters
and functions in electron transfer, while DmsC anchors the
DmsAB subunits to the membrane.1 The reduction of DMSO
is catalyzed at the molybdenum site, which is associated with
two molybdopterin guanine dinucleotide cofactors.1

DmsA is related to the structurally well-characterized
monomeric soluble periplasmic DMSO reductases from
Rhodobacter sphaeroides2-4 andRhodobacter capsulatus,5

but to date, there is no direct structural information on the
active site ofE. coli DMSO reductase. Early structural studies
of the RhodobacterDMSO reductases6-8 suffered from
problems due to modifications of the active site by different
sample treatments. In particular, three early crystal structures
from three different groups6-8 gave conclusions that were
in conflict both with results from spectroscopy2,9 and with
each other. It is now generally agreed that the root of this
confusion was cocrystallization of multiple forms of the
active site, consisting of active and inactive species, arising
from different sample treatments.3-5 Two structures of the
oxidized MoVI active site are found, one a six-coordinate
monooxo species with serine oxygen and four sulfurs from
two coordinated molybdopterin dithiolene cofactors3,4 and
the other a five-coordinate dioxo species with a serine ligand
and only one of the two active site dithiolene cofactors
bound.4,7 Because the former structure is that observed both
in solution and following catalytic turnover,3 it is generally
supposed that this corresponds to a physiologically relevant
active site.
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One advantage of X-ray absorption spectroscopy (XAS)
is that it has no restrictions on the sample state. We present
herein an XAS study10 of the molybdenum site ofE. coli
DMSO reductase contained within its native membrane,16

which has had only minimal preparation and should therefore
be close to the form found in vivo. The concentration of
molybdenum in these samples is approximately 40µM,
which is challenging for XAS. However, recent advances in
sensitivity18 allow us to collect adequate data even at such
low concentrations.

Figure 1 shows the Mo K X-ray absorption near-edge
spectrum of membranous DmsABC compared with the
spectra of prototypical members of the three families of
molybdenum enzymes. As expected, the near-edge spectrum
is distinct from sulfite oxidase and xanthine oxidase but
closely resembles that ofR. sphaeroidesDMSO reductase
(Figure 1). The extended X-ray absorption fine structure
(EXAFS) spectrum of DmsABC is shown in Figure 2,
together with best fits and the corresponding Fourier
transforms, and the parameters obtained from curve fitting
are summarized in Table 1.

The curve-fitting analysis clearly indicates the presence
of a single ModO group at 1.71 Å, four sulfurs at 2.43 Å,
and a longer oxygen at 1.90 Å. The four sulfur atoms can

be attributed to chelation by the dithiolene moieties of the
two molybdenum cofactors and the longer oxygen to a
conserved serine previously suggested to be a ligand of
molybdenum (Ser176).17 Of the three interactions included
in our analysis, Mo-O is the least definitively determined
because it does not give rise to a clearly resolved peak in
the Fourier transform. Omitting the Mo-O interaction in the
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Figure 1. X-ray absorption near-edge spectra of DmsABC compared with
prototypical members of the three families of molybdenum enzymes: (a)
sulfite oxidase; (b) xanthine oxidase; (c)R. sphaeroidesDMSO reductase;
(d) DmsABC.

Figure 2. (A) Mo K-edge EXAFS spectrum of membranous DmsABC
(solid line) plus best fit (broken line). (B) Corresponding Fourier transforms
phase-corrected for Mo-S backscattering.

Table 1. EXAFS Curve-Fitting Parameters forE. coli DmsABCa

interaction N R σ2 ∆E0 F

Mo-O 1 1.711(3) 0.0017(1) -14.3(5) 0.281
Mo-S 4 2.429(1) 0.0043(1)
Mo-O 1 1.902(9) 0.0042(4)

a Coordination numbersN, interatomic distancesR (Å), Debye-Waller
factorsσ2 (Å2), and threshold energy shifts∆E0 (eV). Values in parentheses
are the estimated standard deviations (precisions) obtained from the diagonal
elements of the covariance matrix. Accuracies are greater than these values
and are generally accepted to be(0.02 Å for bond lengths and(20% for
coordination numbers and Debye-Waller factors. The fit-error functionF
is as previously defined.3
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EXAFS curve-fitting analysis results in an increase in the
fit-error function from 0.218 to 0.322, which corresponds
to a significantly worse fit because we estimate that close to
0.2 of the error is contributed by high-frequency noise.19

Thus, our analysis indicates a structure similar to that
determined for activeR. sphaeroidesDMSO reductase,
which gave almost identical Mo-S and Mo-O bond lengths
of 2.44 and 1.92 Å, respectively, and a marginally shorter
ModO bond length of 1.68 Å.2,3 All three interactions are
close to or within the generally accepted EXAFS accuracy
of ( 0.02 Å. Background subtraction of EXAFS for low-
concentration samples is significantly more challenging than
samples at higher concentrations,15 and although considerable
care was taken, some slight distortion (lengthening) of the
ModO bond might arise from artifacts of background
subtraction. Thus, we conclude that, within the uncertainties
of our technique, the observed bond lengths for the DMSO
reductases fromR. sphaeroidesandE. coli are identical.

Figure 3 shows a postulated local structure for the
molybdenum active site of oxidized DmsABC with a
geometry similar to that observed forR. sphaeroidesDMSO
reductase.4 While geometrical information is not directly
available from our EXAFS analysis, the absence of any trans-
effect elongation of the Mo-S ligands argues for nonocta-
hedral geometry, and the similarity of the near-edge spectra
(Figure 1) strongly argues for geometrical similarity between
the two enzyme active sites.

The catalytic activities ofRhodobacterandE. coli DMSO
reductases differ in having opposite enantioselectivity;R.
capsulatusDMSO reductase selectively reduces theSenan-
tiomer of methyl-p-tolyl sulfoxide, while E. coli DMSO

reductase preferentially reduces theR enantiomer.20 Our
results indicate that this difference in enantioselectivity is
not reflected by any EXAFS-detectable changes in the bond
lengths of ligands that are coordinated directly to molybde-
num. However, geometrical differences between the two
enzyme active sites are certainly possible, for example,
opposite geometrical arrangements of ModO and Mo-
O(Ser) ligands for theE. coli and Rhodobacterenzymes.
Such differences in coordination would not be reflected by
any changes in the near-edge spectra (i.e., spectra of
enantiomers would appear identical).

In summary, we have used XAS to investigate the active
site structure ofE. coli DMSO reductase contained within
its native membranes. We find that the oxidized active site
is a monooxo species with four sulfurs coordinated, plus a
longer oxygen, and that it is strikingly similar to that
postulated forR. sphaeroidesDMSO reductase. Furthermore,
our results also suggest that the same form is likely to exist
in vivo.
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Figure 3. Postulated structure for the molybdenum active site of DmsABC.
Only the dithiolene carbons of the two molybdopterin cofactors are shown.
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